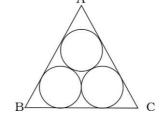


Date Planned : / /	Daily Tutorial Sheet - 7	Expected Duration: 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

- Determine a positive integer $n \le 5$, such that $\int_{0}^{1} e^{x}(x-1)^{n} dx = 16-6e$ 61. (1992)
- If 'f' is a continuous function with $\int_0^x f(t) dt \to \infty$ as $|x| \to \infty$, then show that every line y = mx intersects 62. the curve $y^2 + \int_0^x f(t) dt = 2$ (1991)
- Investigate for maxima and minima the function, $f(x) = \int_{1}^{x} [2(t-1)(t-2)^3 + 3(t-1)^2(t-2)^2] dt$ 63.
- For $a \in R$ the set of all real numbers), $a \neq -1$, $\lim_{n \to \infty} \frac{(1^a + 2^a + ... + n^a)}{(n+1)^{a-1}[(na+1) + (na+2) + ... + (na+n)]} = \frac{1}{60}$. Then, $a \neq -1$ *64. is equal to:
- (C) $\frac{-15}{2}$ (D) $-\frac{17}{2}$ (A) Let $S_n = \sum_{k=0}^n \frac{n}{n^2 + kn + k^2}$ and $T_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + kn + k^2}$, ln n = 1, 2, 3, ..., then: (2008)
- (A) $S_n < \frac{\pi}{3\sqrt{3}}$ (B) $S_n > \frac{\pi}{3\sqrt{3}}$ (C) $T_n < \frac{\pi}{3\sqrt{3}}$ (D) $T_n > \frac{\pi}{3\sqrt{3}}$
- Show that, $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{6n} \right) = \log 6$. 66. (1981)
- The common tangents to the circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$ touch the circle at the points P,Q 67. and the parabola at the points R, S. Then, the area (in square units) of the quadrilateral PQRS is:
- The area of the equilateral triangle, in which three coins of radius 1 cm are placed, as shown in the figure, 68. (2005)is:
 - $(6+4\sqrt{3})$ square units (A)
 - $(4\sqrt{3}-6)$ square units (B)
 - $(7+4\sqrt{3})$ square units (C)
 - $4\sqrt{3}$ square cm (D)



- 69. The area of the triangle formed by the positive X-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is: (1989)
- 70. The area enclosed within the curve |x| + |y| = 1 is: (1981)

*65.